RNA stability enhancers for durable obnoxious-modified mRNA therapeutics

Date:

The Sundarban Information availability

The sequencing information of foremost monitors, IVT mRNAs and mutagenesis libraries that reduction the findings of this survey will likely be found from Zenodo (https://doi.org/10.5281/zenodo.14789418 and https://doi.org/10.5281/zenodo.15041853)55,61. The raw data of Nanopore DRS from this study are available from the Korea BioData Station under accession number KAP241592 and processed data are available from figshare (https://doi.org/10.6084/m9.figshare.29614520 and https://doi.org/10.5281/zenodo.17077445)62,63. Offer information are equipped with this paper.

Code availability

The codes historical on this survey will likely be found in Zenodo61,63.

References

  1. Mu, X. et al. An origin of the immunogenicity of in vitro transcribed RNA. Nucleic Acids Res. 46, 5239–5249 (2018).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Pupil
     

  2. Mu, X. & Hur, S. Immunogenicity of in vitro-transcribed RNA. Acc. Chem. Res. 54, 4012–4023 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Pupil
     

  3. Baiersdörfer, M. et al. A facile formulation for the removal of dsRNA contaminant from in vitro-transcribed mRNA. Mol. Ther. Nucleic Acids 15, 26–35 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Pupil
     

  4. Moradian, H. et al. Chemical modification of uridine modulates mRNA-mediated proinflammatory and antiviral response in foremost human macrophages. Mol. Ther. Nucleic Acids 27, 854–869 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Pupil
     

  5. Cottrell, Okay. A. et al. The competitive landscape of the dsRNA world. Mol. Cell 84, 107–119 (2024).

    Article 
    CAS 
    PubMed 

    Google Pupil
     

  6. Pindel, A. & Sadler, A. The goal of protein kinase R within the interferon response. J. Interferon Cytokine Res. 31, 59–70 (2011).

    Article 
    CAS 
    PubMed 

    Google Pupil
     

  7. Kim, M. et al. Exogenous RNA surveillance by proton-sensing TRIM25. Science 388, eads4539 (2025).

    Article 
    CAS 
    PubMed 

    Google Pupil
     

  8. Bérouti, M. et al. Pseudouridine RNA avoids immune detection thru impaired endolysosomal processing and TLR engagement. Cell 188, 4880–4895 (2025).

    Article 
    PubMed 

    Google Pupil
     

  9. Park, J. et al. Short poly(A) tails are valid from deadenylation by the LARP1–PABP complex. Nat. Struct. Mol. Biol. 30, 330–338 (2023).

    Article 
    CAS 
    PubMed 

    Google Pupil
     

  10. Eisen, T. J. et al. The dynamics of cytoplasmic mRNA metabolism. Mol. Cell 77, 786–799 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Pupil
     

  11. Lim, J. et al. Uridylation by TUT4 and TUT7 marks mRNA for degradation. Cell 159, 1365–1376 (2014).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Pupil
     

  12. Norbury, C. J. Cytoplasmic RNA: a case of the tail wagging the dog. Nat. Rev. Mol. Cell Biol. 14, 643–653 (2013).

    Article 
    CAS 
    PubMed 

    Google Pupil
     

  13. Decker, C. J. & Parker, R. A turnover pathway for each valid and unstable mRNAs in yeast: evidence for a requirement for deadenylation. Genes Dev. 7, 1632–1643 (1993).

    Article 
    CAS 
    PubMed 

    Google Pupil
     

  14. Passmore, L. A. & Coller, J. Roles of mRNA poly(A) tails in law of eukaryotic gene expression. Nat. Rev. Mol. Cell Biol. 23, 93–106 (2022).

    Article 
    CAS 
    PubMed 

    Google Pupil
     

  15. Yu, S. & Kim, V. N. A story of non-canonical tails: gene law by post-transcriptional RNA tailing. Nat. Rev. Mol. Cell Biol. 21, 542–556 (2020).

    Article 
    CAS 
    PubMed 

    Google Pupil
     

  16. Warkocki, Z., Liudkovska, V., Gewartowska, O., Mroczek, S. & Dziembowski, A. Terminal nucleotidyl transferases (TENTs) in mammalian RNA metabolism. Philos. Trans. R. Soc. Lond. B Biol. Sci. 373, 20180162 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Pupil
     

  17. Lim, J. et al. Combined tailing by TENT4A and TENT4B shields mRNA from snappy deadenylation. Science 361, 701–704 (2018).

    Article 
    CAS 
    PubMed 

    Google Pupil
     

  18. Kim, D. et al. Viral hijacking of the TENT4–ZCCHC14 complex protects viral RNAs by technique of blended tailing. Nat. Struct. Mol. Biol. 27, 581–588 (2020).

    Article 
    CAS 
    PubMed 

    Google Pupil
     

  19. Web page positioning, J. J. et al. Purposeful viromic monitors yelp regulatory RNA aspects. Cell 186, 3291–3306 (2023).

    Article 

 » …
Read More

LEAVE A REPLY

Please enter your comment!
Please enter your name here

This site uses Akismet to reduce spam. Learn how your comment data is processed.

Share post:

Subscribe

small-seo-tools

Popular

More like this
Related

‘A mad stoop’: Federal workers return to backlogs – and another shutdown deadline

The Sundarban When a authorities attorney for the Nationwide...

3 common alcohol myths, debunked

The Sundarban Beer sooner than liquor never been sicker?...

Oldest known RNA found in 40,000-365 days-frail woolly mammoth leg

The Sundarban The frozen carcass of a 39,000-365 days-frail...

Why are most people ultimate-handed?

The Sundarban Safe the Fashionable Science every day e-newsletter💡 ...