The Sundarban Information availability
The sequencing information of foremost monitors, IVT mRNAs and mutagenesis libraries that reduction the findings of this survey will likely be found from Zenodo (https://doi.org/10.5281/zenodo.14789418 and https://doi.org/10.5281/zenodo.15041853)55,61. The raw data of Nanopore DRS from this study are available from the Korea BioData Station under accession number KAP241592 and processed data are available from figshare (https://doi.org/10.6084/m9.figshare.29614520 and https://doi.org/10.5281/zenodo.17077445)62,63. Offer information are equipped with this paper.
Code availability
The codes historical on this survey will likely be found in Zenodo61,63.
References
Mu, X. et al. An origin of the immunogenicity of in vitro transcribed RNA. Nucleic Acids Res. 46, 5239–5249 (2018).
Mu, X. & Hur, S. Immunogenicity of in vitro-transcribed RNA. Acc. Chem. Res. 54, 4012–4023 (2021).
Baiersdörfer, M. et al. A facile formulation for the removal of dsRNA contaminant from in vitro-transcribed mRNA. Mol. Ther. Nucleic Acids 15, 26–35 (2019).
Moradian, H. et al. Chemical modification of uridine modulates mRNA-mediated proinflammatory and antiviral response in foremost human macrophages. Mol. Ther. Nucleic Acids 27, 854–869 (2022).
Cottrell, Okay. A. et al. The competitive landscape of the dsRNA world. Mol. Cell 84, 107–119 (2024).
Pindel, A. & Sadler, A. The goal of protein kinase R within the interferon response. J. Interferon Cytokine Res. 31, 59–70 (2011).
Kim, M. et al. Exogenous RNA surveillance by proton-sensing TRIM25. Science 388, eads4539 (2025).
Bérouti, M. et al. Pseudouridine RNA avoids immune detection thru impaired endolysosomal processing and TLR engagement. Cell 188, 4880–4895 (2025).
Park, J. et al. Short poly(A) tails are valid from deadenylation by the LARP1–PABP complex. Nat. Struct. Mol. Biol. 30, 330–338 (2023).
Eisen, T. J. et al. The dynamics of cytoplasmic mRNA metabolism. Mol. Cell 77, 786–799 (2020).
Lim, J. et al. Uridylation by TUT4 and TUT7 marks mRNA for degradation. Cell 159, 1365–1376 (2014).
Norbury, C. J. Cytoplasmic RNA: a case of the tail wagging the dog. Nat. Rev. Mol. Cell Biol. 14, 643–653 (2013).
Decker, C. J. & Parker, R. A turnover pathway for each valid and unstable mRNAs in yeast: evidence for a requirement for deadenylation. Genes Dev. 7, 1632–1643 (1993).
Passmore, L. A. & Coller, J. Roles of mRNA poly(A) tails in law of eukaryotic gene expression. Nat. Rev. Mol. Cell Biol. 23, 93–106 (2022).
Yu, S. & Kim, V. N. A story of non-canonical tails: gene law by post-transcriptional RNA tailing. Nat. Rev. Mol. Cell Biol. 21, 542–556 (2020).
Warkocki, Z., Liudkovska, V., Gewartowska, O., Mroczek, S. & Dziembowski, A. Terminal nucleotidyl transferases (TENTs) in mammalian RNA metabolism. Philos. Trans. R. Soc. Lond. B Biol. Sci. 373, 20180162 (2018).
Lim, J. et al. Combined tailing by TENT4A and TENT4B shields mRNA from snappy deadenylation. Science 361, 701–704 (2018).
Kim, D. et al. Viral hijacking of the TENT4–ZCCHC14 complex protects viral RNAs by technique of blended tailing. Nat. Struct. Mol. Biol. 27, 581–588 (2020).
Web page positioning, J. J. et al. Purposeful viromic monitors yelp regulatory RNA aspects. Cell 186, 3291–3306 (2023).


